Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immun Ageing ; 19(1): 6, 2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35065665

RESUMO

The present COVID-19 pandemic has revealed that several characteristics render patients especially prone to developing severe COVID-19 disease, i.e., the male sex, obesity, and old age. An explanation for the observed pattern of vulnerability has been proposed which is based on the concept of low sensitivity of the TLR7-signaling pathway at the time of infection as a common denominator of vulnerable patient groups.We will discuss whether the concept of established TLR-tolerance in macrophages and dendritic cells of the obese and elderly prior to infection can explain not only the vulnerability of these two demographic groups towards development of a severe infection with SARS-CoV-2, but also the observed cytokine response in these vulnerable patients, which is skewed towards pro-inflammatory cytokines with a missing interferon signature.

2.
J Biol Chem ; 279(7): 5263-7, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14630927

RESUMO

Axin is a negative regulator of the Wnt pathway essential for down-regulation of beta-catenin. Axin has been considered so far as a cytoplasmic protein. Here we show that, although cytoplasmic at steady state, Axin shuttles in fact in and out of the nucleus; Axin accumulates in the nucleus of cells treated with leptomycin B, a specific inhibitor of the CRM1-mediated nuclear export pathway and is efficiently exported from Xenopus oocyte nuclei in a RanGTP- and CRM1-dependent manner. We have characterized the sequence requirement for export and identified two export domains, which do not contain classical nuclear export consensus sequences, and we show that Axin binds directly to the export factor CRM1 in the presence of RanGTP.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Citoplasmáticos e Nucleares , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Proteínas de Peixe-Zebra , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Antibióticos Antineoplásicos/farmacologia , Proteína Axina , Linhagem Celular , Regulação para Baixo , Ácidos Graxos Insaturados/farmacologia , Regulação da Expressão Gênica , Humanos , Carioferinas/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Fatores de Tempo , Proteínas Wnt , Xenopus , Proteínas de Xenopus , beta Catenina , Proteína ran de Ligação ao GTP/metabolismo , Proteína Exportina 1
3.
J Biol Chem ; 278(4): 2686-91, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12427749

RESUMO

In red blood cells, protein 4.1 (4.1R) is an 80-kDa protein that stabilizes the spectrin-actin network and anchors it to the plasma membrane. The picture is more complex in nucleated cells, in which many 4.1R isoforms, varying in size and intracellular location, have been identified. To contribute to the characterization of signals involved in differential intracellular localization of 4.1R, we have analyzed the role the exon 5-encoded sequence plays in 4.1R distribution. We show that exon 5 encodes a leucine-rich sequence that shares key features with nuclear export signals (NESs). This sequence adopts the topology employed for NESs of other proteins and conserves two hydrophobic residues that are shown to be critical for NES function. A 4.1R isoform expressing the leucine-rich sequence binds to the export receptor CRM1 in a RanGTP-dependent fashion, whereas this does not occur in a mutant whose two conserved hydrophobic residues are substituted. These two residues are also essential for 4.1R intracellular distribution, because the 4.1R protein containing the leucine-rich sequence localizes in the cytoplasm, whereas the mutant protein predominantly accumulates in the nucleus. We hypothesize that the leucine-rich sequence in 4.1R controls distribution and concomitantly function of a specific set of 4.1R isoforms.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas do Citoesqueleto , Leucina/química , Proteínas de Membrana , Neuropeptídeos , Biossíntese de Proteínas , Receptores Citoplasmáticos e Nucleares , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Clonagem Molecular , DNA Complementar/metabolismo , Éxons , Proteínas de Fluorescência Verde , Humanos , Carioferinas/metabolismo , Leucina/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Isoformas de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transfecção , Proteína ran de Ligação ao GTP/metabolismo , Proteína Exportina 1
4.
Mol Cell Biol ; 22(16): 5708-20, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12138183

RESUMO

Vertebrate tRNA export receptor exportin-t (Xpo-t) binds to RanGTP and mature tRNAs cooperatively to form a nuclear export complex. Xpo-t shuttles bidirectionally through nuclear pore complexes (NPCs) but is mainly nuclear at steady state. The steady-state distribution of Xpo-t is shown to depend on its interaction with RanGTP. Two distinct Xpo-t NPC interaction domains that bind differentially to peripherally localized nucleoporins in vitro are identified. The N terminus binds to both Nup153 and RanBP2/Nup358 in a RanGTP-dependent manner, while the C terminus binds to CAN/Nup214 independently of Ran. We propose that these interactions increase the concentration of tRNA export complexes and of empty Xpo-t in the vicinity of NPCs and thus increase the efficiency of the Xpo-t transport cycle.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Transporte/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Proteína ran de Ligação ao GTP/metabolismo , Animais , Proteínas de Transporte/genética , Células HeLa , Humanos , Microinjeções , Modelos Biológicos , Proteínas Nucleares/genética , Oócitos , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Transferência/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...